Time for a vaccine 'Manhattan Project'?

Maryn McKenna  Contributing Writer

Center for Infectious Disease Research and Policy

It has been 10 years since the H5N1 strain of avian influenza first grabbed international attention by causing the death of a Hong Kong 3-year-old, the novel virus's first known human casualty (see Bibliography: CDC 1997). In the decade since, the virus has torn across the globe, causing 332 known human illnesses and 204 deaths in 12 countries, according to the World Health Organization (WHO), as well as the deaths or preventive slaughter of hundreds of millions of birds.

In that time, avian flu and the potential human pandemic it could cause have waxed and waned in public attention. Scientific attention to the H5N1 threat, though, has never wavered. Much of that attention has focused on finding a vaccine against H5N1, "the single most important public health tool for decreasing the morbidity, mortality and economic effects of pandemic influenza," according to Dr. Gregory Poland, director of the Mayo Clinic's Vaccine Research Group in Rochester, Minn. (see Bibliography: Poland 2006).

But after almost a decade of research, a safe, effective, affordable, and abundant vaccine against H5N1 flu remains disappointingly out of reach. The search for a human avian-flu vaccine that could be developed and delivered in time to short-circuit a pandemic has been dogged by multiple obstacles across many sectors. They include patchy scientific knowledge, sparse government funding, thin manufacturing and packaging capability, and restrictive regulatory structures—along with the wily immunology of the H5N1 virus itself.

Despite recent encouraging news from several clinical trials, the scientific—and financial and political—hurdles to producing a widely deployable vaccine remain dauntingly high. As the WHO admitted in its Global Pandemic Influenza Action Plan, published last year, "At the present time, if an influenza pandemic were to occur, the potential vaccine supply would fall several billion doses short of the amount needed to provide protection to the global population" (see Bibliography: WHO 2006).


Although money for pandemic influenza vaccine research has begun to flow and results have picked up speed, there is widespread frustration that it all took so long.

"If we are serious about a pandemic, we should assume it is going to be imminent and we should be prepared as if it is imminent—not 10, 15 years down the road, but imminent," said David Fedson, MD, a retired vaccine industry executive who has published analyses of pandemic vaccine planning (seeBibliography: Fedson 2007: Author interview).

A chorus of calls to action
Calls have come from across the political spectrum for a more aggressive, better-funded, tightly organized research effort. Former Senate Majority Leader William H. Frist (R-Tenn.) called in August 2005 for a "Manhattan Project for the 21st century" (see 
Bibliography: Frist 2005). In the same month, Michael T. Osterholm, PhD, MPH, director of the University of Minnesota Center for Infectious Disease Research and Policy, publisher of CIDRAP News, recommended the creation of "an international project to develop the ability to produce a vaccine for the entire global population within several months of the start of a pandemic [that would be] a top priority of the Group of Seven industrialized nations plus Russia (the G-8)" (seeBibliography: Osterholm 2005).

Further, the nonprofit, nonpartisan advocacy group Trust for America's Health recommended in October 2006 that governments create a "multinational pandemic vaccine research and development master program" (see Bibliography: Trust for America's Health 2006), and the Infectious Diseases Society of America (IDSA) echoed that call in January 2007, recommending an appropriation of $2.8 billion in such a project's first year (see Bibliography: IDSA 2007).

"An effort on the scale of the Apollo space project is required," the IDSA said.

The Manhattan Project and the nuclear bombs that resulted from it are a sensitive subject to raise in a health crisis that demands international cooperation—particularly a health crisis centered in Asia, where the bombs were used.

But implicit in the invocation of that all-out effort is a hunger for the power, funding, freedom from bureaucracy, and single-minded focus that its leaders enjoyed. The Manhattan Project was founded at emergency speed: The lag time between Albert Einstein's famous letter advising President Franklin Roosevelt that nuclear fission might permit the creation of "extremely powerful bombs" and the first meeting of a newly formed federal Advisory Committee on Uranium was a mere 10 days. The project’s chief, Brigadier General Leslie Groves, was handpicked for his reputation for ruthless efficiency. Even after the United States entered World War II in December 1941, the project boasted the ability to cherry-pick any staff and claim any funding it needed; eventually it employed 130,000 people and received $2 billion in 1940s dollars (about $23 billion today).

Most notably for parallels to pandemic policy, the Manhattan Project simultaneously pursued multiple research paths into nuclear fission and weapons development, dropping entire avenues of inquiry and increasing other labs' funding and staff as results emerged. And from the time of Einstein's letter in 1939 to the dropping of two atomic bombs on Japan in 1945, less than 6 years elapsed (see Bibliography: Schwartz 1998; Gosling 1999).

"I feel as a scientist that we could make progress more rapidly if we sat down in advance and came up with a big-picture strategy and then funded it," said Dr. Gregory Poland, director of the Mayo Clinic's Vaccine Research Group in Rochester, Minn. "We have neither a process for rapidly developing new vaccines nor a track record" (see Bibliography: Poland 2007).

The National Institute of Allergy and Infectious Diseases (NIAID), the primary conduit of federal flu research funds to scientists, believes it does have a robust research agenda. Dr. Carole Heilman, director of the division of microbiology and infectious diseases, points to the flu-research recommendations issued by a blue-ribbon NIAID panel this year as evidence that the agency is guiding extramural researchers to critical questions about flu (see Bibliography: Heilman 2007, NIAID 2007). But with funding limited until recently, much of the research being conducted came into being because of private-sector interests rather than an overarching plan, said longtime flu researcher Dr. Arnold Monto of the University of Michigan (seeBibliography: Monto 2007).

0 comments:

Post a Comment